
Computer-Sensor System for
Autonomous Indoor Transport

Sonar-Infrared Beacon Sensing Augmented by Ultrasonic Shield

Benjamin Goldstein
Advisor: Professor Roman Kuc

Submitted to the faculty of the Department of Electrical Engineering
in partial fulfillment of the requirements for the degree of Bachelor of

Science

Department of Electrical Engineering
Yale University

May 10, 2023
[Revised December 21, 2023]

Abstract

Autonomous vehicle technology is experiencing a boom this decade: the industry has an
estimated total market capitalization of over $100 billion as of 2022, and is projected to
exceed $1.8 trillion by 2030 (pre 2023). Outdoor autonomous vehicle systems commonly uti-
lize satellite-based GPS technology for coarse positioning in conjunction with LiDAR (light
detection and ranging), UWB (ultra-wideband), and CV (computer vision) systems for ob-
ject detection and path planning. Indoor localization, though, remains a more open issue–
common personal device location software typically uses GPS with a resolution of roughly 3
meters (gps 2020). Recent developments in UWB technology have helped increase resolution
at shorter ranges, although at an often restrictive pricepoint (Guo et al. 2022). In this project
the group investigated a different sensor-based approach: positioning of sonar-infrared en-
abled beacons around the landscape for triangulation-based localization. Beginning with a
legacy configuration consisting of a PC and Arduino mounted on a wheelchair chassis, the
group refactored the setup into a smart, sensor-integrated system powered by a Raspberry
Pi PC as well as an Arduino microcontroller for offboard signal processing. The process
culminated in a proof-of-concept in which the robot was able to orient itself toward a beacon
and drive until the beacon reaches a minimum distance, at which point the robot stops.
In addition, the proof of concept included a PWM (pulse width modulation) based proto-
col for beacon identity encoding in infrared signals, paving the way for implementation of
triangulation based localization in future work.

i

Table of contents

Front matter
Abstract . i
Table of contents . iii
Acknowledgements . iv

1 Introduction 1
1.1 Background . 1

1.1.1 Definitions . 2
1.1.2 Related Work . 4

1.2 Legacy System . 4
1.2.1 Motor Driver/Actuator Layer . 5
1.2.2 Virtual Joystick/Microcontroller Layer 6
1.2.3 PC/Top-Level Control Layer . 7
1.2.4 Legacy Integration . 8

1.3 IR-Sonar Circuit Design Concept . 9
1.3.1 Ranging Protocol . 9
1.3.2 Circuit Design . 10

2 Methods 12
2.1 Primary Onboard Compute Unit . 12

2.1.1 Driver Core . 13
2.1.2 Higher Level Drivers . 14
2.1.3 Sensing Modules . 15
2.1.4 Camera Localizer . 16
2.1.5 Complete Software System . 17

2.2 Sensor Systems . 18
2.2.1 Ultrasonic Obstacle Avoidance System 18
2.2.2 Seven Sensor IR Apparatus . 19
2.2.3 R&D: Custom Sonar System . 19
2.2.4 Infrared Beacon . 20

3 Results 21
3.1 Manual Drive Collision Avoidance . 21
3.2 Beacon-Seeking Autonomous Navigation . 22
3.3 Camera Localization . 23

4 Design Decisions 25

ii

4.1 Headless Raspberry Pi Design . 25
4.1.1 Networked Solutions for Control . 26
4.1.2 Networked Control System Design 26

4.2 Optimizing Camera Snapshot Interval . 27
4.3 Pin Allocation/Distributing Compute . 27
4.4 Software Module Structure . 28
4.5 Obstacle Avoidance Strategy . 28

5 ABET Outcomes 29
5.1 Engineering Problem Solving . 29
5.2 Health, Environmental, Economic Considerations 30
5.3 Communication With Range of Audiences 30
5.4 Ethical & Professional Responsibilities . 30
5.5 Teamwork & Collaboration . 31
5.6 Experimentation & Data Analysis . 31
5.7 Knowledge Acquisition & Learning . 32

6 Conclusion 33

iii

Acknowledgments

There are many people I’d like to thank for the success of this project. First and fore-
most, Professor Roman Kuc and Kevin Ryan provided a degree of technical expertise and
mentorship that were integral in pushing this project over the finish line. From debugging
electronics with an oscilloscope to ensuring that the right parts were always in the lab on
time, these two brought constant stability and direction to a project that often desperately
needed it.
I’d also like to thank my partner on the drive system team, Jonathon Durand, for the long
hours spent together in the lab tinkering with sonar circuits and I/O pinouts. Without his
efforts this robot would likely have never driven! I absolutely must also shout out the rest
of the group: Yu Jun Shen and Austin Zhu designed a clever infrared system, providing a
previously blind robot with eyes, while Sachi Sharp, Maggy Lambo, and TJ Patel created a
PCB-based high power sonar system with the potential to boost the robot’s capabilities to
the next level by pushing the bleeding edge of range and beam-width.
Though less directly involved in the project, I’d like to thank my housemates: Reese Johnson,
Adam Marcelo, Wilson Nesbit, Aidan Sze, and Cavan Walsh. They’ve made our residence a
hospitable place to the all-nighters and engineering jargon that’s characterized this project,
and that would likely outright frighten most outsiders to the field. I commend their resilience,
and would be remiss not to express my gratitude in this section.
I’d also of course like to thank my family and friends who are too numerous to name, but
include my parents Lynne and Stephen, and number one supporter Niki Francis. Without
their love and encouragement I wouldn’t be here today!

iv

Chapter 1

Introduction

The goal of this project was to investigate sensor-based, primarily infrared and sonar, ap-

proaches to automated transport. The project was structured as a redesign and augmenta-

tion of an existing system: an electronic wheelchair chassis. The wheelchair was originally

designed to be operated solely by human control through a joystick apparatus, particularly

by the elderly. Collisions with both pets and grandchildren were commonplace, and need

for action was apparent. With this in mind, we set out to create a sensor system that aug-

ments the functionality of the joystick controlled wheelchair while keeping the safety and

autonomy of the user in mind. This chapter summarizes background information pertaining

to the project, the project specification, and the starting system on top of which the project

was built.

1.1 Background

The problem of autonomous transport is not particularly new, and a vast corpus of existing

literature along with a comprehensive suite of tools exist to solve it. Many existing technolo-

gies are powerful for globally scoped use cases, but have insignificant resolution for indoor

applications. Certain higher resolution systems fail to achieve sufficient range, and others

1

are prohibitively costly. The design outlined in this project occupies a productive niche in

the aforementioned landscape, and that should become apparent after this section.

1.1.1 Definitions

The establishment of a common vocabulary is integral to the coherence of this report. The

subsection will cover various localization and positioning techniques as well as relevant signal

processing terminology. GPS refers to Global Positioning System, a satellite-based radio

navigation system owned by the US government and operated by the US Space Force. Radio

waves refer to the portion of the electromagnetic spectrum ranging from roughly 1 Hz to 3000

GHz– GPS uses several frequency bands in this range all between 1000 and 1600 Mhz (GIS

2023). GPS is an extremely powerful system that drives the vast majority of moderate to

low resolution location software, such as a smartphone’s location services, up to a resolution

of roughly 3 meters (gps 2020). Resolution in this context refers to the uncertainty bound

up to which we can rely upon the accuracy of our reading. For example, a GPS position is

only valid up to ± 3 meters in any direction.

Lidar refers to light detection and ranging, radar radio detection and ranging, and sonar

sonic navigation and ranging. All three technologies utilize the emission of a signal (Lidar

and radar utilize electromagnetic transmissions, while sonar deploys sound waves) and the

analysis of a reflected response to determine features about the surrounding landscape. The

most common such analysis is ToF (time of flight) analysis, which determines the range to

an object by recording the time between transmission and detection of a reflected signal by

the following relation:

d =
v · tf
2

(1.1)

where d is the measured distance, v the signal velocity, and tf the recorded time of flight. The

speed of light and sound are both well known, so the time of flight is sufficient to determine

range under the assumption that the signal travels in a straight line in both directions.

2

Many times this is not the case– due to the topology of the environment signals may reflect

at strange angles producing convoluted flight paths and thus inaccurate ToF ranges. This

is an open problem with this technology, and often measurements are simply taken with

a high frequency and smoothed to avoid drastic effects of such anomalous measurements.

Due to the limitations on the speed of low-price electronics, it should be noted that sonar

systems (as well as ultrasonic systems that are analogous but with a slightly higher operating

frequency) are significantly more compatible with ToF ranging.

Finally the definition subsection closes with coverage of IR (infrared), UWB (ultra-

wideband), and relevant signal processing terms. Infrared refers to the electromagnetic

spectrum ranging from roughly 300 GHz to 400 THz. This is the portion of the spectrum

that is lower frequency but immediately adjacent to the visible spectrum. Infrared sensing

is commonly used to augment visual spectrum techniques, as in the case of night vision

and heat-seaking weaponry (Harder et al. 2020). Perhaps less militant applications are also

worth mentioning: infrared emitter/sensor pairs are commonly used for simple remote con-

trol systems including non-internet television remotes. UWB is a novel radio technology that

utilizes a wider bandwidth, encoding information in varied energy levels at sharply defined

time intervals. UWB is commonly used for ranging applications as it achieves a uniquely

high resolution at low to moderate ranges with ToF analysis. For this reason, UWB has

been gradually integrated into leading smartphones over the past 5 years (Flueratoru et al.

2021). Digital signals refer to signals that are interpreted as discrete values, generally speak-

ing by using a threshold. Analog signals, conversely, are signals interpreted as taking values

on a continuous range. PWM (pulse-width modulation) refers to a technique that encodes

information in the duty cycle of a periodic (repeating) digital signal. The duty cycle of a

signal is the percentage of time that it spends as a digital 1 as opposed to a digital 0. PWM

is commonly used to encode analog information (that takes values on a continuous range)

in a digital signal (which takes values 0 or 1).

3

1.1.2 Related Work

As was eluded to in the prior subsection, ultra-wideband has emerged as the dominant

ranging and localization technology in terms of both resolution and range (Flueratoru et al.

2021). It has not, however, yet experienced the price plummet that often accompanies the

maturation of an emergent development into an established component of modern systems.

Hence, given the use case of the project, UWB was ruled out as an option. In a similar light,

much development has occurred in the field of machine-learning based image processing,

which can be leveraged for pose estimation and therefore positioning (Phon-Amnuaisuk et al.

2022). The bottleneck here is compute: in order to feasibly execute the computation required

to maintain accurate position data from the camera, the robot would either demand onboard

compute capacity at least at the level of a modern laptop (which is prohibitively expensive

and bulky to mount) or a persistent low-latency network connection for communication

with a provisioned cloud cluster. The project team decided collectively that reliance on

such a connection could compromise the reliability and even safety of the project, opting

to primarily rely on sensing to aid the robot’s movement. The relative economics of more

established sensing equipment makes looking to an older result extremely compelling: sensor

fusion of IR and sonar. Usage of sonar and IR in tandem to support path planning is an

established method, and can be readily augmented through the use of beacons (Flynn 1988).

Through the placement of beacons around the landscape, Flynn’s design can be boosted to

achieve higher accuracy and reliability. This realization served as the jumping off point for

the project.

1.2 Legacy System

This section describes the initial system from which the team began our development. This

preliminary setup can be divided into three layers: the motor driver/actuator layer, the

virtual joystick/microcontroller layer (control layer 1), and the PC layer (control layer 2).

4

Notably absent is any sensor integration– the wheelchair chassis was a purely manually

controlled entity prior to this project.

1.2.1 Motor Driver/Actuator Layer

In this subsection we discuss the physical layer, or motor drive. It is of the utmost importance

to understand the system at lower levels of abstraction before layering on complexities. The

wheelchair chassis is driven by two independently controlled DC motors, one driving each rear

wheel. The front two caster wheels are merely to stabilize the vehicle, and are free to rotate

on their vertical axis to facilitate steering. The rear wheels are fixed in their orientation.

The chassis is powered by a pair of 12 V wheelchair batteries, which are typically rated on

the order of 30-35 AH. The unit is also fitted with an onboard DC to AC inverter, which

is not used to drive the motors but rather to power any additional systems that demand

AC power. The batteries are rechargeable via a standard 120V 60Hz AC wall outlet, and

are resilient to repeated charge/discharge cycles over relatively long lifespans (2 years of

consistent use).

The motor drivers are supplied with two inputs per wheel: a PWM signal that governs the

rotational speed, as well as an H-bridge digital input that controls direction. The underlying

circuit can be diagrammed something like this:

VPWM M

Vhbr = 0
+

GND
−

VPWM M

Vhbr = 3.3 V
+

GND
−

Figure 1.1: Circuit Schematic of Motor Driver Interface

Reversing the polarity of the H bridge control voltage changes the direction across which

the input voltage is applied to the motor driver by toggling two pairs of switches. Under

5

the hood the H-bridge is likely implemented using CMOS or a comparable semiconductor

technology, but the mechanical switch model is suitable for this level of analysis. The PWM

polarity is always the same– only the duty cycle is altered. The exact relationship between

duty cycle and rotational speed was not investigated beyond the basic understanding that

higher duty cycle yields higher rotation speed. The PWM frequency is also held constant;

in the legacy system it was set to roughly 32 kHz. Note that in this structure the actuator

layer does not set the PWM or H-bridge control inputs, but rather exposes them as an input

to the next layer.

1.2.2 Virtual Joystick/Microcontroller Layer

This layer’s primary task is to translate higher level directives from the user into the voltage

inputs described in the previous subsection: a PWM magnitude and digital direction (fed

into the H-bridge) for each wheel. The legacy system was designed around virtualizing the

physical joystick used to drive the chassis in its former role as a manually operated wheelchair.

The virtual joystick was implemented with an Arduino Uno microcontroller wired as follows:

Both the input select and emergency stop are powered by an on-chip pullup voltage through

Arduino Uno

Digital

4 Input Select (Input Pullup)

20-50 kΩ

VCC

5 Emergency Stop (Input Pullup)

20-50 kΩ

VCC

7 Right H-Bridge (Output)
8 Left H-Bridge (Output)
9 Right PWM (Output)

10 Left PWM (Output)

Analog
A0 Joystick X (Input)
A1 Joystick Y (Input)
A2 Scaler (Input)

Power (via USB)

Figure 1.2: Arduino UNO Pinout of Legacy Virtual Joystick

6

a builtin resistor. The emergency stop and input select switches are both connected to

ground in typical pullup input configuration. The emergency stop switch does exactly that

in software: when pressed the robot ceases to send voltage to the motors through the PWM

pins. The input select pin toggles between taking input from the physical joystick (via analog

pins A1 and A2) and from the COM port (which also powers the device). In software, the

Arduino computes appropriate digital values for each H-bridge and PWM output pin from

the appropriate input. If the input select switch is closed (the digital read will be high), then

the Arduino uses analog voltage values from the joystick taken from potentiometers whose

values are altered by the physical position of the controller. Those values are then scaled by

a factor derived from the value of a third potentiometer attached to a knob for global speed

control. The horizontal (X) value of the joystick is associated with a rotation rate, while the

vertical (Y) value of the joystick is associated with a forward/backward speed. Only after

establishing forward/rotation speeds are the individual wheel speeds (and thus PWM duty

cycles/H-bridge polarities) calculated. This decomposition of motion into a radial (forward)

and rotational component is extremely prevalent throughout the rest of the drive system

design. If the switch is closed then the Arduino polls the USB port awaiting byte-encoded

speed information, again decomposed into rotational and translational terms. The virtual

joystick does have the capability to serve as the top-level control unit through the physical

controller, but also exposes a serial port interface for PC-based control.

1.2.3 PC/Top-Level Control Layer

Despite the direct control capability of the joystick, the primary means of control of the

legacy system was through a discrete time MATLAB program. The program presented a

GUI with four options: up, down, left, or right. Upon pressing the appropriate button, the

robot would either step forward, backward or rotate a fixed amount left or right. The default

step duration was set to 0.5 seconds, so difficulties in precise control are fairly foreseeable.

MATLAB also is required to run on a desktop computer, so a Windows desktop along with

7

a workstation consisting of a keyboard, mouse, and monitor on a rolling cart adjacent to the

chassis was required to control the drive system.

1.2.4 Legacy Integration

The section will finish by discussing the integration between the previously described layers,

including all interfaces exposed between layers as well as those exposed to the end-user.

Layer 1
(Actuator)

Right H-Bridge

Left H-Bridge

Right PWM

Left PWM

Layer 2
(Arduino)

Input Switch
Emergency Stop

Scaler

Joystick Y

Joystick X
COM Port

Fwd/Rot Speeds
Layer 3
(PC)

Workstation

Figure 1.3: Interlayer Integration Details of Legacy System

Despite the flaws in this design, it is absolutely well designed in the sense of layered

abstraction. The data flows in one direction from a high degree of abstraction in the matlab

program to a low degree as voltage values to the motor driver. The main focuses after an

initial observation of this system were definitely to (1) remove the dependence on a rolling

workstation adjacent to the robot, (2) refactor software out of MATLAB and into a faster,

more lightweight langauge, and (3) switch control from discrete time to ”continuous” time

(or closer to it).

8

1.3 IR-Sonar Circuit Design Concept

In addition to the drive system described in section 1.2, the group started off with some sense

of a design for IR-sonar fusion based beacon sensing. The design consists of two separate

circuits: one with a sonar emitter and IR receivera nd the other vice versa. The goal is to

be able to ”singaround”, i.e. have the IR emitter chirp, the sonar emitter hear it and chirp

back (in sonar this time) and have the IR emitter perform some type of analysis based on

the nature of the received IR response. This requires not only careful circuit design, but also

a knowledge of networked systems.

1.3.1 Ranging Protocol

In addition to the circuit itself, this design also introduces a novel ranging protocol based

on sonar ToF analysis compared to an IR baseline. The timing diagram is seen below:

Robot Beacon

t

Sonar Pulse

∆t > tf,max

Sonar Pulse

IR Pulse

∆t ≈ tf

Figure 1.4: Ranging Protocol Timing Diagram

As can be seen in the timing diagram, the protocol unfolds something like this: The

robot emits a periodic sonar pulse, waiting for an infrared response. If the robot doesn’t get

the repsonse within a reasonable amount of time, then it resends the sonar pulse. If it does

get the IR response, then it records the amount of time between the sonar emission and the

IR reponse, treating that as its time of flight at the speed of sound. This analysis makes

9

two main assumptions: first that the IR transmission occurs effectively instantly. If the IR

transmission took non-negligible time then the c would have to be subtracted from the speed

of sound in each calculation, which it is not. The second is that the beacon responds to the

sonar hit immediately, or at the very least with low latency relative to the true time of flight.

Both of these assumptions are generally true enough to rely on for ToF analysis without loss

of precision, and the robot can calculate its range to the beacon via equation 1.1.

1.3.2 Circuit Design

Initially, the implementation of the protocol utilized two microcontrollers with analog sensor

circuit integrations. A proof-of-concept schematic is included below:

Arduino Uno

8

R∥ = 10 kΩ

VDD = 12 V

7

Sonar Pulse

10 kΩ = R∥

+

−

VCC = 5 V

100 kΩ
100 Ω Arduino Uno

9

13

RD

VDD = 12 V

IR Pulse

Figure 1.5: Initial Design for Ranging Schematic

There are a couple of key observations to note about this circuit. Both emitters are

powered by 12 V, with an on-off toggle implemented with an Arduino digital output tied

to an NMOS transistor gate. When the output is high, current flows from VDD to ground

activating the sonar/IR emitter. When the output is low, no current flows and the signal

10

ceases. On the receiver side, the IR receiver simply is fed directly into a digital input pin.

When the IR signal hits the phototransistor, a voltage is induced across the collector and

emitter (this time the transistor terminal, not the component responsible for emitting the

signal). The sonar signal, conversely, needs amplification. The opamp configuration shown in

1.5 is designed to step up the sonar receiver voltage to levels readable by the Arduino digital

input. This design served as the starting point for the investigation of sensor-integrated

transport system.

11

Chapter 2

Methods

This chapter addresses the design and implementation of the system. A detailed analysis of

design decisions made in the process of reaching this system can be found in Chapter 4. By

the end of this chapter it should be clear how the robot’s software, computer hardware, and

auxiliary circuits are structured to implement sonar-infrared beacon sensing. The beacon

design, albeit simpler, will also be covered in this chapter. Given that my team’s focus

was primarily on the drive system that will be the principal topic in this chapter, though

the complete design picture will be clear. The design of this system should stand in stark

contrast to that described in section 1.2, in both capability and efficiency of design.

2.1 Primary Onboard Compute Unit

This section details the redesign of the control system, from the layered approach shown

in figure 1.3 to a consolidated approach built using a Raspberry Pi. In contrast to an

Arduino microcontroller, the Raspberry Pi is a full-fledged personal computer, efficiently

packed into a similarly sized board. The Raspberry Pi runs a fully capable OS (operating

system) based on a modified version of the linux kernel, and is fitted with HDMI ports for

display, Bluetooth/WiFi connectivity, USB ports for typical I/O (i.e. keyboard/mouse),

12

and an array of GPIO (general purpose I/O) digital output pins, some fitted with hardware

generated PWM signal capabilities. This is all in addition to the memory virtualization,

multiprocessing, and file system management capabilities that come with even the most

lightweight OSes. The Raspberry pi is also easily mounted on the robot, in contrast to the

Windows desktop used as the primary compute unit in the legacy design.

The software, implemented in Python3, is divided up into a hierarchical structure of

packages and modules with an extremely simple dependency graph. Each relevant module

or module group receives its own subsection in this section, which culminates in a description

of the complete software system.

2.1.1 Driver Core

The driver core module implements layer 2 of the legacy system. It encapsulates the hardware

system used to drive the robot as well as other parameters, including max forward/rotational

speed and the frequency of the PWM signals. The module contains a single class Driver

with a single method drive. That method takes parameters turn_speed: float and

forward_speed: float. These parameters have no physical meaning, but merely control

the forward translation rate and It has no return value, as it represents the bottom layer

of the software system, but rather simply sets the duty cycles and H-bridge values for each

wheel using a designated GPIO output pin. The driver is also responsible for initializing its

GPIO pins properly, that is setting the two pins used to set the H-bridge to digital outputs,

and initializing GPIO PWM instances for each PWM pin (as well as setting them to digital

outputs) to support hardware PWM generation. Notably this occurs on a continuous time

basis: the driver core module does not implement any timing aspects, it simply modifies

the robot speed upon invocation of the drive method. A higher level system that invokes

the driver core driver is therefore responsible for updating the forward and rotate speeds

at relatively frequently, as otherwise the robot will likely oversteer and/or collide with an

obstacle.

13

2.1.2 Higher Level Drivers

In theory, a driver core driver object could be instantiated explicitly from the python in-

terpreter i.e. d = driver_core.Driver() and controlled directly via a series of calls to

d.drive(rot_speed, fwd_speed), but this does not constitute a usable system. The sim-

plest interface in the codebase to the driver core is the keyboard driver module, which

dictates forward and rotate speed via keystroke detection of a connected keyboard. A Blue-

tooth keyboard was connected to maximize mobility, and our wheelchair chassis achieved the

capability of a simple remote control vehicle. The keyboard driver module has a single class

Driver again with a single method drive. The keyboard driver instantiates a core driver and

simply invokes coredriver.drive() with the appropriate parameters given the keyboard

state. The other interface to the driver core is an autopilot: IR driver. the IR driver module

integrates with the seven sensor IR module to orient the robot in the direction of the beacon,

and drives towards it at a fixed speed

Higher level drivers are also responsible for integrating with sensor systems. This section

covers only the software component of the sensor systems as well as their integration with

the Raspberry pi, but a comprehensive description of sensory methods is included in section

2.2. The keyboard driver and IR driver each optionally has the ability to integrate with two

sensor packages: obstacle avoidance (based on ultrasonic sensing) and camera localization.

If integrated with obstacle avoidance, an additional layer is added between keystroke infor-

mation or IR heading and the rotate/forward speeds passed into driver core. The obstacle

avoidance module retrieves a series of four distances, each from an ultrasonic sensor at a

different vantage point on the robot. The obstacle avoidance module then slows the for-

ward/rotate speeds to avoid collisions if objects are detected in the direction of the robot’s

motion. The camera localizer logs position data based on tracking of key features on the

ceiling of the room, but doesn’t affect the drive system otherwise.

14

2.1.3 Sensing Modules

This subsection concerns the two primary analog sensing modules: obstacle avoidance and

seven sensor IR. The obstacle avoidance module contains a single class: Obstacle Avoidance

that is responsible for polling a COM (USB) port for four comma separated values corre-

sponding to distance from the front right, front left, front, and rear bumpers. Those four

distances are used to slow the right rotate, left rotate, forward, and backward speeds re-

spectively if the robot is moving in that direction while the distance goes below a minimum.

The rolling minimum over a sliding window of 25 measurements was used as the ground

truth distance to avoid false ”all clear” signals resulting in collision. The control mechanism

applied scales speed like the following:

v =

−vmax/10 d < dmin

vmax

(
d−dmin

dmax−dmin

)3

dmin < d < dmax

vmax d ≥ dmax

(2.1)

Where vmax is the maximum speed, dmin is the shield distance, and dmax is the distance

beyond which obstacle avoidance is no longer applied. Although this is clearly applicable

to forward/backward speeds, it is also used for rotational avoidance as well using the side-

bumper distances and rotational velocities. -vmax/10 is used to stop the robot by reversing

its gears, simply setting speed to 0 would let the robot roll into the obstacle!

The second sensing module of interest is the seven sensors module. It contains a single

class SevenSensorIR that encapsulates the GPIO-level details of IR readings. The SevenSen-

sorIR class has two methods: get IR and get IR PWM. getIR simply returns an array of

boolean values corresponding to whether each of the 7 IR sensors (arranged in a crown

shape) has detected a signal. This is used to detect the heading of the beacon for orientation

purposes as mentioned in the previous section. Get IR PWM was not used in this integra-

tion but would allow for the encoding of beacon identity in the IR signal. By polling the

15

IR sensors over a period and detecting the duty cycle, the robot could differentiate between

at least two beacons. The infrared package (which contains the seven sensors module) also

contains utility modules for visualizing sensor data and testing the system.

2.1.4 Camera Localizer

Though not integrated into the robot’s beacon sensing/auto-drive capabilities, the Rasp-

berry Pi camera was included as a localization aid. By pointing the camera at the ceiling,

the camera tracked the motion of key features and used that transformation to track the

movements of the robot. The camera tracked two types of key points: features detected by

ORB (Oriented BRIEF, or Oriented Binary Robust Independent Elementary Features), and

the intersection of lines detected by Hough transforms. ORB is a feature detection method

implemented in the Python Opencv library for free use that takes an image as input and

generates a set of key points. Using the builtin descriptor matcher, a mapping from the key

points in a prior image to those of the current image was created (Karami et al. 2017). The

Hough transform (or particularly the probabilistic Hough transform) is an algorithm with

various applications that is used for line detection. In the context of images, the Hough

transform generates a probability matrix of whether a pair of points lie on the same line in

the image, and then return the best few lines as determined by a set of hyperparameters.

The pairwise intersection intersection points between (roughly) perpendicular line pairs were

then computed and greedily clustered into sets with a maximum radius of 15 pixels. The

means of those clusters were then included in the feature set, and matched with the previous

image by minimizing distance.

Once two equal cardinality point sets were obtained, one in the prior image and the other

in the current image, the transformation between the point sets was fitted to a translation

and a rotation using singular value decomposition (Arun et al. 1987). Finally after the

translation vector and rotation matrix were obtained, the changes in position were applied

in the current frame, and then transformed back into the original coordinate system to

16

accumulate position data. In practice the rotation angle derived from this method performed

poorly, so the alternative method of relying on the grid-like structure of the ceiling was used

for angle tracking. Everything else, though, remained the same.

2.1.5 Complete Software System

Now that each component of the software system has been outlined in detail, it is fitting to

put the pieces of the puzzle together as seen below:

Driver
Core

Motor
Driver

IR Driver Keyboard
Driver

Seven
Sensors IR

Obstacle
Avoidance

Camera
Localizer

Figure 2.1: Dataflow Diagram of Integrated Software System

Note that the IR Driver and Keyboard Driver are the modules that are directly used,

which can be deceptive given their position in the center of the dataflow graph. An intuition

can be salved from the fact that these objects intake information from the sensors and

output it into the core driver, which in turn drives the robot. This is hopefully a convincing

argument for the usage of IR Driver and Keyboard Driver as top level control units.

17

2.2 Sensor Systems

Though not my area of focus, I will attempt to survey the external sensor systems used

to aid the drive system for the sake of completeness. Note that this excludes the camera

system, as that is more or less built into the Raspberry Pi and required zero external circuitry

or integration. The systems surveyed here are the off-board ultrasonic system for obstacle

avoidance, the infrared sensing circuit behind the seven sensor IR module, and the beacon

design. Also mentioned is a rough overview of a custom sonar system that was still in

development at the end of the semester, so was never integrated into the robot.

2.2.1 Ultrasonic Obstacle Avoidance System

In order to implement obstacle avoidance, four ultrasonic sensors were deployed to prevent

running into (or backing into) an obstacle directly head on, as well as rotating into an

obstacle directly to the side of the robot at the time of rotation. The design for a single

ultrasonic circuit is shown below:

Figure 2.2: Ultrasonic Circuit Design

The resistance value used was 1 kΩ. Rather than using four separate microcontrollers,

18

we used a single Arduino to power all four ultrasonic circuits and synchronized their pulses

to reduce cross interference between signals. The Arduino then performed ToF analysis, and

sent the list of ranges as a comma separated Utf-8 encoded string out through the COM

port. As discussed earlier in section 2.1.3, the Raspberry Pi was configured to poll the COM

port waiting this information. The ultrasonic circuit was set up to record 100 measurements

per second, sufficient frequency for fine grained robot control but a sufficiently low frequency

for accurate ToF readings. The obstacle avoidance mechanism given recorded distances is

also discussed in the previous section.

2.2.2 Seven Sensor IR Apparatus

The eyes of the robot, the seven sensor IR system was a crucial component of the project. The

IR group designed a 3D-printed set of IR sensors lain out at angles ranging from roughly

-75 to 75 degrees off of the robot’s field of view. The IR circuit was based on the IR

receiver design in the introduction and shown in figure 1.5. The design utilized unamplified

phototransistor signals as inputs to digital GPIO pins. The usage of these digital signals is

discussed in the previous section. The group faced numerous challenges in terms of current

consumption when scaling up, and navigated them expertly to produce this result.

2.2.3 R&D: Custom Sonar System

The sonar group attempted to create a custom sonar circuit that would exceed the range

and beam-width of the existing ultrasonic components. The ultrasonic sensor used in the

obstacle avoidance circuit is mounted on a complex board, which the group attempted to

improve upon. Using discrete semiconductor components including comparators, timers, and

opamps, the group struggled with varying power tolerances as they attempted to operate

the circuit at high voltage and current to push the limit of range. Unfortunately this system

never made it over the finish line in time to integrate with the robot, though it remains an

area of interest for further research.

19

2.2.4 Infrared Beacon

As the sonar system was never integrated into the beacon as in the proof of concept design,

the beacon was designed simply to provide an IR emitter for orientation. Distance sensing

would then have to be done with the on-robot ultrasonic sensors, which would in turn double

as beacon range sensors under the assumption of an open landscape. The infrared beacon was

designed as a wall-outlet compatible high power infrared emitter mounted on a stepper and

backed by an angled surface for signal reflection (similar in shape to a modern satellite dish).

An image is shown below for reference: With the IR sensing and emitting systems completed

Figure 2.3: Photograph of Infrared Beacon

and integrated into the drive software, the robot was poised to perform autonomous indoor

navigation toward the beacon.

20

Chapter 3

Results

This chapter surveys the results of implementing the aforementioned design. The chapter

evaluates the robot’s ability to perform each of the following tasks:

(a) Mitigate collision risk under manual drive

(b) Navigate toward and stop in front of an IR beacon in an open environment

(c) Localize using computer vision

Due to the challenges with sonar sensing explained in the previous chapter, the robot was

unable to perform localization based on the singaround-based design with multiple beacons.

However, the robot achieved a high degree of success with both collision avoidance under

manual drive as well as beacon-seeking autonomous navigation. The camera localizer pro-

duced extremely mixed results, but is a promising approach given more time to iterate.

3.1 Manual Drive Collision Avoidance

When the keyboard driver object was instantiated with obstacle avoidance enabled, the sonar

sensors were effective in avoiding head on, rear on, or simple rotation collisions. Simple

rotation collisions here are defined as stationary rotation into a large object that remains in

the field of view of the side-facing sensor throughout the rotation. The difficulty with non-

21

simple rotations as well as collisions with objects not directly in front of the robot’s center

comes from coverage. The robot chassis is relatively large, so especially at close distances

the ultrasonic system is riddled with blindspots. The results are promising, though, as it

seems increasing the number of sensors (which is cheap both economically and power-wise)

would fix the issue.

3.2 Beacon-Seeking Autonomous Navigation

As long as the robot’s starting orientation was within 180 degrees of the beacon’s center of

oscillation, the robot was able to detect and orient toward the beacon, before driving up to

it and stopping within some distance. There were a few issues that the group successfully

resolved in the process of fine tuning this process. First was that the rotating beacon would

cause the robot to rotational oscillation even at the minimum drive distance. This is because

the obstacle avoidance feedback mechanism only stops forward motion unless there is an

impedance to the side, otherwise it’d be impossible to escape a wall! In this case we applied

a tweak given that the distance to a forward obstacle was presumed to be the distance to

the beacon: also scale down rotate speed as the robot approaches the beacon. This had the

effect of winding down the ”wiggle” as the robot neared the destination.

The second issue was that the original placement of the front-facing ultrasonic hit the

beacon at a thin point. This caused occasional ultrasonic misses even as the robot neared

the beacon, ending up with a collision! Re-placing the sensor at a higher point even with

the large reflective surface alleviated the problem. Overall the robot’s performance on this

task can be characterized as a success, though future work is definitely needed to generalize

this demonstration to more applicable autonomous navigation.

22

3.3 Camera Localization

The camera based localizer demonstrated extremely mixed results. On rich regions of the

ceiling it performed extremely well, with very few hiccups between snapshots. The issue

is that the error here builds, as the position is taken as the composition of inter-photo

transformations. Therefore a bad reading can skew the position data for the rest of the

run. One of the big performance upgrades was turning off the ceiling lights so that the

camera could better focus on the regions that were otherwise totally darkened in contrast

to the dominant light source. Below is a set of images demonstrating the image processing

pipeline: From left to right we see the raw image, a black and white image derived from

Figure 3.1: Image Processing Pipeline

dynamic thresholding, a clearer black and white image derived from morphological kernel

processing, the raw image with Hough lines superimposed (derived from morphologically

processed image), and finally the clustered intersection points. This point set is sufficiently

rich for analysis, and therefore performed well in path tracing. In other instances, though,

there were one or no total points in the set, which failed to provide sufficient information

to determine location change. Augmenting the intersection point set with ORB features

provided mixed results: for one the dataset size improved on average, but the quality of the

mapping was drastically worse for the ORB keypoints than it was for the Hough intersections.

Despite many failures, there was promising data from one of the most successful tests of the

whole process shown below. The left figure shows timeseries x and y data from the path,

while the right plot traces out the coordinates in the Cartesian plane. It is apparent that the

camera system does a good job of grasping the general shape of the path and accumulates

23

Figure 3.2: Localization Data From Roughly Square Path

minimal error. The path also may not have exactly closed in reality, so it’s hard to tell the

exact magnitude of the true error. This was the best test recorded, though, so it’s clear

there is room for improvement. The camera is promising though as a means of localization,

as there are a whole host of techniques that can be used in various camera positions and

image processing methods. Overall the camera localization experiment was unreliable, but

showed signs of promise as a subject of future work.

24

Chapter 4

Design Decisions

This chapter focuses on the various design decisions and engineering tradeoffs encountered

in the process of reaching the design described in Chapter 2. Topics include the headless

operation of the Raspberry pi, the timing interval between snapshots of the camera localizer,

GPIO/Arduino pin allocation between sensory applications, the overall structure of the

codebase, and the particular obstacle avoidance response implementation. Excluded are the

various design considerations of the sensor teams, as I did not have much insight into those

processes.

4.1 Headless Raspberry Pi Design

There were two main drawbacks to the MATLAB-desktop-workstation configuration of the

legacy system. First off, the MATLAB script controlled the robot in discrete timesteps which

was untenable for a smooth autopilot experience. This was changed purely in software: now

the top level control unit updates robot state rather than setting, delaying, and resetting.

This enables nearly continuous-time drive by updating the robot state in a loop. The focus

of the section is therefore the elimination of wired connections from the Raspberry Pi to

a controlling workstation. When the desktop computer had to be plugged into the wall,

25

this was not an issue in and of itself. Now that the Raspberry Pi is mounted directly on

the robot and powered by the onboard inverter, the wires from the pi to the controlling

keyboard, mouse, and monitor are the limiting factor of robot mobility. These connections

were then promptly removed by taking advantage of the Raspberry Pi’s network capability.

4.1.1 Networked Solutions for Control

In order to manage the running scripts/processes on the Raspberry Pi remotely we take

advantage of the SSH (secure shell) protocol, which grants remote access to a bash terminal

over an internet connection. This allows for full management of the Raspberry Pi through

the CLI (command line interface). When debugging it became apparent that the Raspberry

Pi was not completely properly configured for networking. However, when both the client

laptop and the Pi were connected to Yale Guest network (Yale Secure was too tricky) SSH

worked seamlessly. The one functionality that SSH leaves out is keyboard control. Keystrokes

from an SSH client appear in the bash terminal but don’t register with the SSH server’s (the

Pi’s) OS. This means that the Python keyboard library fails to detect keystrokes from an

SSH client– an alternative pathway is needed.

In order to control the robot over the network a Bluetooth keyboard was introduced. The

Bluetooth keyboard connects directly to the Pi rather than via SSH, so keystrokes on that

device can directly control the robot. Also, it is simple to manage the Bluetooth service over

the CLI, so the keyboard can be connected without ever needing a wired monitor/mouse.

4.1.2 Networked Control System Design

This subsection concerns an analysis of the solution at the system level, beginning with a

diagram: It is a noteworthy fact that the ”start/stop” functionality is communicated over

a completely different pathway (SSH) from the control once underway. This gives rise to

interesting scenarios during testing when the Bluetooth goes out but the internet stays up,

or vice versa as the system isn’t up or down, but rather in an intermediate unstable state.

26

BT
Keyboard

BT Connection Raspberry
Pi

SSH Connection Laptop/
PC

Figure 4.1: Network Diagram of Control System

4.2 Optimizing Camera Snapshot Interval

This section concerns the optimization of camera snapshot interval. After software optimiza-

tion, computer vision processing time was no longer a bottleneck– images could be sampled

at a nearly arbitrary rate and passed through the pipeline for positioning. There are two

main constraints on processing rate: mapping complexity and signal noise ratio. If images

are sampled too far apart, then mapping points in clusters from the first image to points in

clusters of the second becomes exceedingly difficult. The minimal distance map decays in

accuracy, and more advanced methods also begin to fail. If the sampling rate is too high,

conversely, then the signal to noise ratio falls off: the points may have moved 2 pixels in

reality but have a 10 pixel noise margin in the image. After an iterative process, it was

determined that sampling images at 10Hz gave optimal results.

4.3 Pin Allocation/Distributing Compute

One of the notable pieces of this design is that there are two compute units: a primary unit

(the Raspberry Pi) and an offboard microcontroller (the Arduino). This design choice was

made for a couple of reasons. The obvious one is that the Raspberry Pi has insufficient digital

pins to handle all of the sensors, so some sort of split is necessary. In theory it is possible

to extend the digital pin structure using shift registers, but this was deemed an unnecessary

complexity. Consolidating all of the ultrasonic sensors onto one Arduino seemed to be a

logical design: the Arduino has ample compute power to handle the simple calculation of

distance from ToF, and is useful to synchronize the pulses of the four ultrasonic sensors.

27

The Arduino can then easily communicate these results back over the COM port. Overall

moving the ToF and digital pin overhead off of the Raspberry Pi is a very fruitful design

decision that improves the overall quality of the system.

4.4 Software Module Structure

A massive portion of the design process of the drive system came down to the structure

of the codebase. The software was carefully implemented according to an object oriented

paradigm as well as a directional dataflow model from sensors to drivers to the core to the

robot. Much of this is discussed in previous sections so further elaboration would likely be

redundant, but this was an extremely important piece of the design process.

4.5 Obstacle Avoidance Strategy

Early on in the process we had a conversation with Professor Kuc about obstacle avoidance.

Though many strategies use feedback to exert what amounts to a repulsive force between the

vehicle and the obstacle, these strategies take control away from the user and add uncertainty

to path planning processes. With this in mind, we elected to use a slowdown based approach

to obstacle avoidance. This approach gives the user the ability to respond to their nearing

an obstacle without being swerved out of the way, slowly reducing their speed to a stop if

they do not respond.

28

Chapter 5

ABET Outcomes

This chapter concerns the alignment of this project with the ABET outcomes. ABET defines

a set of core objectives for students, which this project was designed to fulfill. Each section

will address one of these ”outcomes”, and paint a narrative of demonstrated competency

from this project.

5.1 Engineering Problem Solving

”An ability to identify, formulate, and solve complex engineering problems by
applying principles of engineering, science, and mathematics.”

In this project, students were tasked with creating an autonomous vehicle that navigated

indoor environments using sensory information. This could be the epitome of a complex

engineering problem, one that billions of dollars and millions of man hours are being thrown

at as we speak. The solution that the group designed requires expertise in the domain of

electromagnetism, acoustics, and obviously electronics engineering. In the end the robot

was able to successfully seek an infrared beacon, mitigate collision risk, and there are clear

pathways toward accurate beacon-based and camera-based localization strategies.

29

5.2 Health, Environmental, Economic Considerations

”An ability to apply engineering design to produce solutions that meet specified
needs with consideration of public health, safety, and welfare, as well as global,
cultural, social, environmental, and economic factors.”

As illustrated in Section 4, there are various factors that go into every decision made in

the process of engineering a system. The design decision that best demonstrates competency

in this area in my opinion is the obstacle avoidance response system. The group responded

to the issue of injuries to grandchildren and pets while keeping control in the user’s hands.

This was also accomplished while keeping economic costs low, utilizing a single low-cost

microcontroller and four relatively cheap ultrasonic sensor components.

5.3 Communication With Range of Audiences

”An ability to communicate effectively with a range of audiences”

Over the course of this project the group was required to communicate effectively both

among ourselves as well as to the outside world. This report is designed to reach a variety

of readers, ranging from experts in the field of sensing and robotics to young students in-

terested in learning more about STEM. Internally, members of the group had a vast range

of backgrounds– I myself have a stronger programming/computer science background while

others excel in circuit design, soldering, and analog signal processing. Communication be-

tween groups and backgrounds was integral to the success of the project.

5.4 Ethical & Professional Responsibilities

”An ability to recognize ethical and professional responsibilities in engineering
situations and make informed judgments, which must consider the impact of
engineering solutions in global, economic, environmental, and societal contexts.”

30

The team demonstrated a high degree of professionalism and ethical considerations

throughout the project process. Students constantly made time to meet and hack through

problems together despite busy schedules and various commitments. In the design ethics

were considered in the drive speeds and obstacle avoidance systems which were optimized

for quality of life and safety. Students also demonstrated a high degree of responsibility and

personal accountability in the lab, making sure all equipment was returned to its original

place and batteries plugged in before leaving the lab.

5.5 Teamwork & Collaboration

”An ability to function effectively on a team whose members together provide
leadership, create a collaborative and inclusive environment, establish goals, plan
tasks, and meet objectives.”

I can attest to the importance of effective teamwork. Our team was made up of individuals

with different skill sets and backgrounds, which allowed us to approach the project from a

variety of perspectives. We established clear goals and planned tasks accordingly, delegating

responsibilities based on each team member’s strengths. Our inclusive and collaborative

environment allowed for open communication and constructive feedback, which led to a more

cohesive and polished final product. By working together towards a common objective, we

were able to meet our project objectives and create a successful robot that utilized sonar

and infrared technologies. Overall, this project demonstrated the power of teamwork and the

importance of creating a supportive and collaborative environment to achieve shared goals.

5.6 Experimentation & Data Analysis

”An ability to develop and conduct appropriate experimentation, analyze and
interpret data, and use engineering judgment to draw conclusions”

Developing and conducting appropriate experimentation, analyzing and interpreting data,

31

and using engineering judgment to draw conclusions is a crucial principle in engineering. In

this project the group was tasked with evaluating the viability of various sensor based ap-

proaches to indoor navigation. We developed experiments to evaluate the ranges and beam

widths of various sensors, as well as test the path planning capabilities of the different sys-

tems. Our engineering judgment allowed us to weigh the benefits and drawbacks of the

configuration and make informed decisions. This project highlighted the importance of de-

veloping a robust experimental design, collecting and analyzing data effectively, and using

sound engineering judgment to draw conclusions. It demonstrated how these skills are essen-

tial for making informed decisions that can have a significant impact on a project’s success.

5.7 Knowledge Acquisition & Learning

”An ability to acquire and apply new knowledge as needed, using appropriate
learning strategies.”

In the constantly evolving field of engineering, the ability to acquire and apply new knowl-

edge using appropriate learning strategies is critical. Going into this project, I had limited

experience with designing systems compatible with Raspberry Pi/resource constrained sys-

tems. I was used to having arbitrarily many CPU and GPU cores available as needed,

but the Pi was limited to a single CPU. Adapting to this resource constraint required fast

learning and usage of online resources/research papers. Additionally, the analog aspects of

this circuit were extremely new, and demanded similarly agile knowledge acquisition. This

project demonstrated the importance of being adaptable and willing to learn new skills and

technologies. By being proactive in acquiring and applying new knowledge, engineers can

stay at the forefront of their field and deliver innovative solutions to complex problems.

32

Chapter 6

Conclusion

This project was a journey, culminating in a robot that had both autonomous and aided

manual driving capabilities for navigating both open and obstacle ridden landscapes. It’s

definitely unfortunate that the camera based positioning system never came together in a

reliable sense, but it represents an interesting opportunity for future work and showed a

lot of promise. It was an awesome moment to finally get the robot working– seeing it inch

toward the beacon while reorienting itself to the spinning IR emitter was a real joy. There

were moments of frustration when it felt like the drive system was implemented but there

were no working sensors to integrate, but everything came together in the end. As usual,

the little things hurt too– connecting the Bluetooth keyboard and figuring out how to turn

the lights off have taken hours off my life that I’ll never get back. I’d also love to have

finished the sonar shield with more complete coverage, either by increasing the number of

sensors or augmenting the system with servo motors. With the localization system and

ultrasonic shield complete autopilot is only a programming project away. The project was

an fascinating exercise in augmenting an existing system with sensors and computers– I’m

excited to see where the next cohort of students take it from here.

33

Bibliography

2020. 2020 sps performance standard - gps: The global positioning system. URL https:
//www.gps.gov/technical/ps/2020-SPS-performance-standard.pdf.

2023. Autonomous vehicle market (by application: Defense, transportation; by level of
automation: Level 1, level 2, level 3, level 4, level 5; by propulsion: Semi-autonomous,
fully autonomous; by vehicle: Passenger car, commercial vehicle) - global industry analysis,
size, share, growth, trends, regional outlook, and forecast 2023 - 2032. URL https:
//www.precedenceresearch.com/autonomous-vehicle-market.

Arun, K.S., T.S. Huang and Steven Blostein. 1987. Least-squares fitting of two 3-d point
sets. ieee t pattern anal. Pattern Analysis and Machine Intelligence, IEEE Transactions
on PAMI-9. 698 – 700. doi:10.1109/TPAMI.1987.4767965.

Flueratoru, L., S. Wehrli, M. Magno, E. S. Lohan and D. Niculescu. 2021. High-accuracy
ranging and localization with ultra-wideband communications for energy-constrained de-
vices.

Flynn, A.M. 1988. Combining sonar and infrared sensors for mobile robot navigation. The
International Journal of Robotics Research 7(6). 5–14. doi:10.1177/027836498800700602.
URL https://doi.org/10.1177/027836498800700602.

GIS. 2023. Everything you need to know about gps l1, l2, and l5 frequencies. URL https:
//gisresources.com/.

Guo, Hua, Mengqi Li, Xuejing Zhang, Xiaotian Gao and Qian Liu. 2022. Uwb indoor
positioning optimization algorithm based on genetic annealing and clustering analy-
sis. Frontiers in Neurorobotics 16. doi:10.3389/fnbot.2022.715440. URL https://www.
frontiersin.org/articles/10.3389/fnbot.2022.715440.

Harder, Paula, William K. Jones, Redouane Lguensat, Shahine Bouabid, James Fulton,
Dánell Quesada-Chacón, Aris Marcolongo, Sofija Stefanovic, Yuhan Rao, Peter Man-
shausen and Duncan Watson-Parris. 2020. Nightvision: Generating nighttime satellite
imagery from infra-red observations. CoRR abs/2011.07017. URL https://arxiv.org/
abs/2011.07017.

Karami, Ebrahim, Siva Prasad and Mohamed S. Shehata. 2017. Image matching us-
ing sift, surf, BRIEF and ORB: performance comparison for distorted images. CoRR
abs/1710.02726. URL http://arxiv.org/abs/1710.02726.

Phon-Amnuaisuk, Somnuk, Ken T. Murata, La-Or Kovavisaruch, Tiong-Hoo Lim, Praphan
Pavarangkoon and Takamichi Mizuhara. 2022. Visual-based positioning and pose estima-

34

https://www.gps.gov/technical/ps/2020-SPS-performance-standard.pdf
https://www.gps.gov/technical/ps/2020-SPS-performance-standard.pdf
https://www.precedenceresearch.com/autonomous-vehicle-market
https://www.precedenceresearch.com/autonomous-vehicle-market
https://doi.org/10.1109/TPAMI.1987.4767965
https://doi.org/10.1177/027836498800700602
https://doi.org/10.1177/027836498800700602
https://gisresources.com/
https://gisresources.com/
https://doi.org/10.3389/fnbot.2022.715440
https://www.frontiersin.org/articles/10.3389/fnbot.2022.715440
https://www.frontiersin.org/articles/10.3389/fnbot.2022.715440
https://arxiv.org/abs/2011.07017
https://arxiv.org/abs/2011.07017
http://arxiv.org/abs/1710.02726

tion.

35

	Abstract
	Table of contents
	Acknowledgements
	Introduction
	Background
	Definitions
	Related Work

	Legacy System
	Motor Driver/Actuator Layer
	Virtual Joystick/Microcontroller Layer
	PC/Top-Level Control Layer
	Legacy Integration

	IR-Sonar Circuit Design Concept
	Ranging Protocol
	Circuit Design

	Methods
	Primary Onboard Compute Unit
	Driver Core
	Higher Level Drivers
	Sensing Modules
	Camera Localizer
	Complete Software System

	Sensor Systems
	Ultrasonic Obstacle Avoidance System
	Seven Sensor IR Apparatus
	R&D: Custom Sonar System
	Infrared Beacon

	Results
	Manual Drive Collision Avoidance
	Beacon-Seeking Autonomous Navigation
	Camera Localization

	Design Decisions
	Headless Raspberry Pi Design
	Networked Solutions for Control
	Networked Control System Design

	Optimizing Camera Snapshot Interval
	Pin Allocation/Distributing Compute
	Software Module Structure
	Obstacle Avoidance Strategy

	ABET Outcomes
	Engineering Problem Solving
	Health, Environmental, Economic Considerations
	Communication With Range of Audiences
	Ethical & Professional Responsibilities
	Teamwork & Collaboration
	Experimentation & Data Analysis
	Knowledge Acquisition & Learning

	Conclusion

