
Optimization and Computation (S&DS 431) - Final Project

Evolutionary Approach to Traffic Signal Optimization
(EvATO)

Benjamin Goldstein b.goldstein@yale.edu
Department of Computer Science
Yale University
New Haven, CT 06520, USA

Luke Mozarsky luke.mozarsky@yale.edu

Department of Statistics & Data Science

Yale University

New Haven, CT 06520, USA

1. Introduction

Traffic congestion is a significant problem in many urban centers around the world. Besides
the increased time commuters must wait to get to their destination, vehicle congestion
wastes fuel and produces increased emissions, posing an environmental hazard; each year
in the U.S., idling wastes an estimated 6 billion gallons of fuel, and personal vehicles alone
generate roughly 30 million tons of CO2 from idling (1). Slow downs and vehicle build-up at
intersections are a significant source of urban traffic, and efficiency in signal programming
has proven effective in reducing traffic congestion (2). Thus, optimization of traffic signals
on a city-wide scale can help reduce both the monetary and temporal costs related to traffic
congestion, and are currently a subject of intensive research.

In this work, we report an attempt to optimize the traffic light signals in a simulated
urban road network using a simple genetic algorithm. We place a predetermined number of
vehicles in a model of New Haven’s road network, and we simulate their routes over a given
time period. In particular, we minimize the total ”time lost” during all vehicle journeys
over several parameters pertaining to each traffic light in the network: the cycle time, the
partition of green light time in for each direction at an intersection, and the offset in time
between cycles of different lights. We provide an overview of SUMO, the network generator
used to accurately recreate the New Haven road network, and algorithm implementation
details. In doing so, we propose a evolutionary approach to traffic signal optimization,
EvATO. Finally, we discuss our results and comment on possible next steps we could take
in continuation of this work.

2. Related Work

Significant effort has been expended into algorithmic optimization of traffic signals, with
seminal work conducted by the Robertson et. al. under the supervision of the British
government in 1969 (3; 4). Iterative improvements on TRANSYT have become the industry

1

Goldstein and Mozarsky

standard and variants are sold as closed source software products by both American and
British transportation authorities. These models have been applied in a wide variety of
scenarios to improve traffic flow, particularly in urban areas (5; 6). The basic premise of the
system is to combine a simulator based traffic model with a traffic signal optimizer. Original
approaches used heuristics such as the hill climb algorithm with fixed step size sequences and
single parameter optimization sequences, but modern variants utilize advanced techniques
such as genetic algorithms and multiperiod methods. TRANSYT uses a macroscopic traffic
model that ignores individual vehicles in favor of continuous methods including platoon
splitting and queue spillback. TRANSYT faces competition from similar software, but the
above methodology remains the state of the art (7).

Techniques that optimize over historical data, such as reinforcement or deep learning
methods, typically require many samples to realize a global optimum, which may or may not
be easily acquired. Simulation-based methods can overcome the need for large quantities of
data, but are often limited in how realistic the generated road network is. As we describe
in the following sections, EvATO is a simulation-based approach to optimize traffic signals
in a highly realistic, generated road network. Thus, we bypass the need for big-data sources
while maintaining the applicability of our results to an optimization framework for a real-life
urban traffic grid.

3. Optimization Problem Formulation

Consider a network of roads (edges) with n traffic lights, one at each intersection (node).
Traffic light i follows a predetermined pattern defined by a finite ordered set of states Si,
with (Si)k, state k of traffic light i, being activated for a time tst,i,k. Each state is a string
of characters ’G’ (unyielding green), ’g’ (yielding green), ’y’ (yellow), and ’r’ (red). A naive
approach would be to optimize over the space of potential state sets as well as durations. It
becomes incredibly difficult to enforce real-world constraints without drastically restricting
the state space of a given light, so we neglect this altogether. Instead, we take a signal i’s
state set Si to be given and optimize over the durations of each state tst,i,k. We only give
attention to states with green lights; states with only yellow and red signals are considered
to have a fixed activity time ty (yellow light timing is typically fixed or nearly fixed across
a jurisdiction). We decompose the traffic light i’s timing into the following components:
cycle time, offset time, active time list. The cycle time, tc,i, is the total time taken by the

light to run through its complete state list, or more precisely tc,i =
∑|Si|

k=1 tst,i,k. The offset
time, to,i, which is defined as the time it takes for light i’s first state (Si)1 to become active
in a given configuration of states. The active time list is simply tst,i,k, though now subject
to the constraints

∑
k tst,i,k = tc,i due to defined cycle time and tst,i,k = ty ∀ k s.t. ′y′ ∈

(Si)k. We also constrain the active times to a range to maintain realistic behavior, that is
tst,min ≤ tst,i,k ≤ tst,max.

In a given time period, m vehicles pass through this network, following shortest-path
routes between randomly selected predetermined point pairs. Upon simulation, vehicle j
completes its journey in time tj . However, suppose that the vehicle would take time t′j to
complete its journey if it traveled at the posted speed limits and was not interrupted by
slow downs (red lights, traffic). We define the time lost by vehicle j on journey as t′j − tj ,
making the total time lost by all vehicles τ =

∑m
j=1(t

′
j − tj).

2

Optimization and Computation (S&DS 431) - Final Project

To summarize, we formulate our optimization problem as follows: given the described
network, what is the choice of cycle time, offset time, and green light partition time for
each traffic light that minimizes τ , the total time lost? In this framework, total time lost τ
is our objective function which we attempt to minimize. Our decision variables are:

• A vector of cycle times [tc,1, ..., tc,n], one time for each traffic light

• A vector of offset times [to,1, ..., to,n], one time for each traffic light

• A matrix of active state times, T , of dimension n × K where K is the maximum
number of active states for a given traffic light, across all traffic lights. The rows of T
correspond to the traffic lights, and the columns of T correspond to the active time
allotted to a given state; thus, the component Tik corresponds to the active time for
state (Si)k—state k belonging to traffic light i—denoted by tst,i,k. If for traffic light i
we have |Si| < K (meaning traffic light i has fewer states than the maximum number
of states held by any traffic light), zeros appear in row Ti following the last state of
light i.

The constraints we impose on our optimization scheme are:

• tc,i =
∑|Si|

k=1 tst,i,k (the cycle time for a given light is the sum of time allotted to all
states belonging to the light)

• 0 ≤ to,i ≤ tc,i (the offset time is undefined below zero and can be at most the light’s
cycle time)

• tst,min ≤ tst,i,k ≤ tst,max where

– tst,min = |{Si| ′y′ ∈ (Si)k for k = 1, ..., |Si|}| · 6 + |{Si| ′G′ ∈ (Si)k ∪ ′g′ ∈
(Si)k for k = 1, ..., |Si|}| ∗ 7, where 6 seconds is the minimum time for yellow
states, and 7 seconds is the minimum time for green states. In other words,
the minimum state time tst,min is simply (number of yellow states) × (minimum
yellow state time) + (number of green states) × (minimum green state time)

– Similarly, tst,min = |{Si| ′y′ ∈ (Si)k for k = 1, ..., |Si|}|·6+|{Si| ′G′ ∈ (Si)k∪ ′g′ ∈
(Si)k for k = 1, ..., |Si|}| ∗ 120, the same expression as above except we now use
the maximum green state time, defined to be 120 seconds (the minimum and
maximum yellow state time are the same, at 6 seconds).

4. Methods

Time lost by vehicles in the road network is not readily formulated as any function, let alone
a convex or approximately convex one, of the traffic signals’ cycle time, offset time, and
active time lists. Gradient methods, therefore, are not readily applicable as the objective
is not differentiable with respect to the parameters. With inspiration from TRANSYT, we
explore the application of a genetic algorithm to traffic signal timing optimization.

3

Goldstein and Mozarsky

4.1 Genetic Algorithm

Genetic algorithms are inspired by principles of biological evolution and natural selection.
Chromosomal crossover, genetic mutation, and fitness based selection are all implemented
programmatically. Each individual is represented as a genome, usually a linear string of
numbers or text similar to the biological analog of a nucleic acid sequence. Fitness is
evaluated based on the objective function of optimization. The fittest individuals of a given
generation are then selected for crossover. Various forms of programmatic crossover exist,
but the simplest is a simple random selection of which parent to inherit each attribute from.
Then a probabilistic mutation is applied to the generated genome, before it is then released
to be part of the next generation. Mutation schemes are largely domain specific, and are
designed to prevent convergence to a local minimum. There is also a feature of genetic
algorithms analogous to a skip connection in deep architectures known as elitism, in which
the most fit element of each generation is directly inserted into the subsequent one to avoid
losing progress.

We apply the genetic algorithm to the traffic light optimization problem as detailed in
Section 3 by considering a genome representation that includes the optimization parameters
for each traffic light: the cycle time, offset time, and active time list. The offset is stored
as a fraction of the cycle time ranging from 0 to 0.2. The cycle time is stored as is, and is
constrained to the following range where ns,i,y is defined as |{′y′ ∈ s′|s′ ∈ si}| and ns,i,g as
|{′y′ ∈ s′|s′ /∈ si}|:

ty ∗ ns,i,y + tst,min ∗ ns,i,g ≤ tc,i ≤ ty ∗ ns,i,y + tst,max ∗ ns,i,g

We are simply calculating the upper and lower bounds for feasible cycle times based on the
signal’s state profile as well as the constraints on active times of each state. The active
times ta,i,k are stored as a list of unnormalized factors that are later used to generate the
active times for green states as follows:

tst,i,k =
ta,i,k∑
k′ ta,i,k′

∗ (tc,i − ns,i,y ∗ ty − ns,i,g ∗ tst,min) + tst,min, ∀k s.t. ′y′ /∈ sk

The active times are first normalized, then multiplied by available surplus cycle time (time
not taken by yellow states or the minimum green time of green states), then finally added to
the minimum green time. This ensures that the active times sum to cycle time and that the
genome still allows for sufficient variation in how active time is partitioned between states.

The crossover scheme used by the algorithm randomly selects which parent to select
each of the cycle time, offset time, and active time list from based on a random threshold
generated per pairing. Element wise selection of active times was considered as opposed to
selecting the list as a whole, but it was concluded that the latter method better maintains
features that made the parent configurations successful. A mutation of a timing configu-
ration is defined as the a reset of the offset time, cycle time, and/or active time list of a
random light to be reset to random values. The initial generation is randomly generated
using a random cycle time within the permitted range, a random offset time between 0 and
1, and a list of random entries for active times for each light. The fitness is evaluated using a
traffic simulation, which is explained in the next subsection. A link to the implementation,
which uses pyeasyga to facilitate the genetic algorithm dynamics is included as a footnote.1

1. https://github.com/bengoldstein19/traffic-light-optimization

4

https://github.com/bengoldstein19/traffic-light-optimization

Optimization and Computation (S&DS 431) - Final Project

Figure 1: Caption

4.2 Network Simulation with SUMO

To generate the road network on which we simulate traffic patterns and different traffic
signal configurations, we utilize the SUMO (Simulation of UrbanMObility), an open source
software package used to generate and simulate activity on road networks2. While SUMO
is a standalone software tool, it is fully integrated into Python with sumolib3, a library
of modules to interact with networks and work with simulation output, as well as traci4

(Traffic Control Interface), an API that allows the user to interact with the simulation in
real time.

SUMO comes equipped with a Python script, OsmWebWizard.py, which interacts with
OpenStreetMap5 to generate simulated networks that resemble road networks in real cities
and towns. Figure 1 shows a recreation of the New Haven road network on the left, and a
close-up view of Columbus Circle in New York City on the right.

We decided to use the New Haven road network as a testing site for optimization.
The network is grid-like, however there are several junctions with more than two roads
intersecting. Thus, it will be interesting to compare how our algorithm selects the best
signal parameters for these junctions with the optimal parameters it finds for the more
typical 2-way intersection.While SUMO allows for the implementation of a host of vehicles
(cars, buses, bicycles, etc.) in addition to pedestrian traffic, for simplicity, we choose to
only place cars in our network.

The program OSMWizard.py requires two parameters to simulate random vehicle routes
throughout the generated network: ”Through Traffic Factor,” and ”Count.” Through Traffic
Factor is how much more likely a car is to begin its route on the edge of the network as
opposed to within the network itself; we set this to 10, under the assumption that we are
perhaps in the earlier portion of the day and more cars are arriving in downtown New Haven
(for, e.g., work) than are leaving. The Count parameter is the number of cars per kilometer
per hour we want in our network; we set this to 50. Though the actual number of cars

2. https://sumo.dlr.de/docs/index.html
3. https://pypi.org/project/sumolib/
4. https://pypi.org/project/traci/
5. https://www.openstreetmap.org/

5

Goldstein and Mozarsky

passing through New Haven per kilometer of road per hour may be larger, we found that
this parameter value shortens the simulation time drastically while still generating enough
traffic throughout the network to see noticeable differences in time lost between different
light configurations.

5. Results

The genetic algorithm succeeded in monotonically decreasing the mean and minimum
penalty across generations when run on a map that includes Yale’s campus and neigh-
boring blocks. The algorithm also demonstrated signs of convergence to a solution, shown
by decreasing fitness variance across generations as well. It should be noted that the penalty
is not directly taken from time loss, an additional component of 2× the vehicle’s time loss is
added if SUMO elects to ”teleport” due to either total deadlock or another unwanted issue
that would break the flow of traffic. The best configurations achieved by the algorithm have
no teleports, but this is used to assess an extra penalty against earlier configurations that
are unreasonably poor. The algorithm was run for 20 generations with 50 configurations per
generation, a crossover probability of 0.5, and a mutation probability of 0.3. The demand
generated was 30 vehicles per kilometer per lane per hour, and the simulation was car-only.
Results of the algorithm run are shown below: The effects of mutations and diversity within

Figure 2: Evolution of best, average, variance, and individual fitness over generations

generations can be seen in the individual-wise fitness curve, which exhibits noise about the
mean. It is also evident that the best, mean, and variance of fitness all decline as the
algorithm evolves. Anomalies occur with negative mutations, as expected, but this overall
trend dominates. The best configuration attained by the algorithm exhibited an average
penalty of 290.55 per vehicle (there are 171 vehicles in the simulation). This performs well

6

Optimization and Computation (S&DS 431) - Final Project

relative to the randomly generated benchmark, which is 950.79 per vehicle taken from the
mean of the first generation. The OSM generated network of this map uses real-life signal
information. In busy areas, including Yale’s campus, New Haven uses mostly actuated sig-
nals. These signals use sensor information from both vehicles and pedestrians to adaptively
adjust durations within a range. The implementation of an actuated signal system is often
an expensive undertaking that is unfeasible for many jurisdictions. The real-life actuated
signal configuration

6. Conclusion

In this work, we demonstrated the capability of optimizing a static light traffic network
with a genetic algorithm to a signal configuration that reduces time lost en route far more
than a random signal configuration. We used only three traffic light parameters—cycle
time, offset time, and the partition of active time between green states—to achieve this
degree of optimization. Our model is fully general and applicable to any road network.For
a simplistic model that moderately resembles a realistic road network, we are satisfied with
our results.

As mentioned in section 3, one parameter we could have optimized over was the actual
states of each traffic light. In our model, we take the states of each traffic light as given
and optimize the distribution of active time among these states. One can imagine an
optimization scheme that actually changes the green, yellow and red signals in a given state.
This framework, however, introduces a significant degree of complexity. Modified states
must be ”allowed” in the sense that they follow the typical rules of the road; one cannot
simply construct a state by a random mixture of green, yellow and red signals, as, in general,
a randomly constructed state will not be ”allowed” and will lead to traffic accidents. (For
example, a state where all lights are green would clearly not be realistic, however this state
may be given to a light if states are generated randomly.) Since each traffic light junction
can have a different number of intersecting lanes, a general rule or algorithm for generating
”allowed” states would need to be developed, which is a complicated task. Allowing for
the modification of states also vastly increases the dimensionality of the problem, making it
more difficult to implement an optimization algorithm that converges to a minimum, much
less the global minimum.

In future work, we could attempt to devise such a method of altering traffic light states
to improve upon existing state sets, as mentioned. We could also try to optimize a network
that uses actuated lights, which would necessitate treating the minimum and maximum
duration of each traffic light state as a decision variable. It is also possible to add new
sources of traffic such as pedestrians and bicycles, although in doing so we would introduce
new parameters into the network that would require pauses (new states with all red signals)
in light cycles. Nevertheless, we produced a generalized framework that is useful optimizing
simple yet realistic road networks and can be built upon for more complex simulations in
subsequent research.

References

[1] U.S. Department of Energy, Office of Energy Efficiency & Renewable Energy. Idling

7

Goldstein and Mozarsky

reduction for personal vehicles. may 2015.

[2] Yang Wang, Huizhen Zhang, Hongtao Yuan, Youqing Chen, Wenlong Yu, Cheng Wang,
Jing Wang, and Yueer Gao. Traffic light optimization based on modified webster func-
tion. Journal of Advanced Transportation, aug 2021. doi: 10.1155/2021/3328202.

[3] D. I. Robertson. Transyt: A traffic network study tool. 1969. URL https://api.

semanticscholar.org/CorpusID:106626896.

[4] D. I. Robertson. Esso energy award lecture, 1982: Coordinating traffic signals to reduce
fuel consumption. Proceedings of the Royal Society of London. Series A, Mathematical
and Physical Sciences, 387(1792):1–19, 1983. ISSN 00804630. URL http://www.jstor.

org/stable/2397455.

[5] Rodrigo Fernandez, Eduardo Valenzuela, Federico Casanello, and Carola Jorquera. Evo-
lution of the transyt model in a developing country. Transportation Research Part A:
Policy and Practice, 40:386–398, 06 2006. doi: 10.1016/j.tra.2005.08.008.

[6] E. Almasri. Signal coordination for saving energy and reducing congestion using transyt-
7f model and its application in gaza city. Natural Resources, 5:282–292, 2014. doi:
10.4236/nr.2014.57026.

[7] Chris Kennett. Understanding linsig in the real world. 2017.

8

https://api.semanticscholar.org/CorpusID:106626896
https://api.semanticscholar.org/CorpusID:106626896
http://www.jstor.org/stable/2397455
http://www.jstor.org/stable/2397455

	Introduction
	Related Work
	Optimization Problem Formulation
	Methods
	Genetic Algorithm
	Network Simulation with SUMO

	Results
	Conclusion

